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The selection of well-defined coherence transfer pathways is an
essential feature of all but the simplest NMR and EPR pulse
sequences. This selection can be achieved by phase cycling and by
pulsed field gradients. The properties of the RF-pulses (flip angle,
offset effects, inhomogeneity) and transport phenomena (diffu-
sion, flow) in conjunction with gradients cause a weighting of the
different coherence transfer pathways. We present a method by
which the selection process can be simulated efficiently and visu-
alized easily. In its basic form it involves straightforward matrix
manipulations without reference to the density matrix and the
particular spin system. This method is implemented in a MAT-
LAB program, called CCCP (Complete Calculation of Coherence

Pathways). © 1998 Academic Press

INTRODUCTION

The concepts of coherence order and coherence transjer
pathways (CTPs) are important both in pulsed NMR and EP
experiments 1-5. The magnetization trajectories in terms o Y,
coherence orders are used to visualize the effects of pulséo‘
sequences. New pulse sequences are usually designed by e
ignating wanted and unwanted CTPs. RF-pulses are in gen k)
nonselective with respect to the excitation or interconversion
different coherence orders, which necessitates the use of
herence pathway filtering techniques. For example, witho
this filtering a general three pulse NMR experiment contai

severe, especially with long intertwined phase cycles givin
rise tot,-noise in two-dimensional spectra.

Pulsed field gradients usually achieve the desired filtering i
a single transient but selectivity may be limited with multiple
filters, especially when only single axis gradient hardware i
used B, 6).

Additionally, the properties of the RF-pulses (flip angle,
shape, offset effects, inhomogeneity) and translatory motic
cause a weighting of the different CTPs.

A compromise between CTP selectivity and time require
ment can be achieved by combining pulsed field gradients al
phase cycles while reducing the number of phase steps as mt
as possible. Sometimes incomplete phase cycles in combir
tion with gradients can be developed empirically, partly by tria
and error. In these cases it becomes difficult to rationalize tt
lection process, in particular for a general spin system. It
sirable to use simulations for reasons of speed, reproducik
and completeness with respect to the possible CTPs.
straightforward approach would be to use an existin
lation package like, e.g., GAMMAY), to calculate the
?Iution of the density matrix for a full phase cycle. However

s method does not yield the required information (the rele
flge amplitudes of the different CTPs) directly. A full
MMA simulation of all possible CTPs is not practical

rlpsecause of time and computer memory constraints. The nut

simultaneously the information of MQF-COSY, NOESY, an§€' Of Possible CTPs in a pulse sequence is of the orgir(2

Relayed-COSY experiments. Furthermore, no distinction b&- L) (Wherepmq,
tween echo and anti-echo signals can be made without spe{",‘i%ﬁj
coherence filtering technique$~3). Only the selection of the
appropriate CTPs makes an experiment specific. Undesif&d

CTPs give rise to spurious echoes in ERRY).

Phase cyclingX, 2) and sequences of pulsed field gradien

is the maximum possible coherence order
n is the number of pulses). Computer algebra approach
have been used to calculate the evolution of product operatc
9, which, however, are even less appropriate for this prok
lem since the number of possible product operator terms ris

fouch faster than the number of CTP8).(Also, the final

(PFGs) @) are the two most important coherence f”terinéecombination qnd simplificgtion of th-e algebraic_expressior
techniques. Phase cycles allow the selection of parallel pa![lﬂ\_/olves excessive use of trigonometric combination rules ar
ways but may take a long time, especially in sequences wightherefore very slow. o .

many pulses, when high coherence orders and good selectivity '€ Purpose of the work presented in this article was t

(in terms of CTPs) are desired. Subtraction errors can becofif/iSe an effective scheme which can be used to simulate t
CTP selection process and which involves only simple matri

1 To whom correspondence should be addressed. calculations. Our goal was to retain as high a degree of ge
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18 JERSCHOW AND MULLER

erality as possible. We eventually obtained a method which can o, b, 0 o,
be used without reference to a particular spin system. RE ol P P e L
THEORY G A N N s /\
GO G1 G2 Gn

Selection by Phase Cycling _
. . . . . FIG. 1. Simple scheme for a general pulse sequencpulses separate
Every density matrix can be expanded in a series of differenty 1 periods of free evolution during which gradient pulsgs may be

components according to their behavior under rotation arouswitched on with different strengths and directions. The coherence gogers

the preferrect—axis (2, 10, 1% (and the effective gyromagnetic ratig$) can only change during the pulses.
Pmax Applying Eg. [2] again, we have
o= 2 o, (1]
P P UqSo-ijTqS = E C(pjl pk)UpkeXF(_iApd)): [7]

. . . Px
wherep, ., IS the maximum possible coherence order (equal to

the number of spins in case of a séimnly system). Upon whereAp =
rotation around the-axis theo, acquire only a phasely),
since

P«—p;- This formula represents the well-known
rule of phase cycling:

A signal passing through a coherence transfer (by a pulse or sequence o

. . . pulses) ofAp reacts to a phase changeof the pulse (or the sequence of
explioF,) o,exp(—idF,) = opexpipd), (2] pulses) by changing its phase byAp¢.

The phase change of the signal for a pulse phase shift of
= m 2#/N (representing thenth step in arN step phase cycle)
ittl]'nerefore is

whereF,=%,1,; is the z-component of the total angular mo-
mentum.
The effect of an RF-pulse is more complicated and,
general, may cause mixing of all coherence orders. Without
specifying the nature_ of the RF-_puIse we may represent_ the Ay = _mzj (Ap + kN) = _mzj Ap — m2mk. [8]
unknown transformation by a unitary operator in the rotating N N
frame under consideration of its relative phalse
The first term in the sum can be compensated by shifting tt
U, = exp(—idF,)U explioF,). [3] receiver phase to select a desired change in coherence or
Ap. Coherence order changes®p + kN (k = 0, =1, £2)
The evolution of an initial operatar,, duringU, is then will also be selected, since the second term is equal to muls
! ple::i Of22rr, while it is running through a complete cycle for

N-1 : :
. = =, = ..., — which leads to the cancellation of the
U,o, Ul = exp(—ipF,)U N N W ,
*Tn-s =i$F.) coherence order changes in between.
X {expli oF ) o, exp(—i doF ) U Texpli oF,) The second rule follows immediately:
. . + . Coherence order changes&p + k- N (N =2, 3,...;k=0, 1,
= exp(—ipF)Uo,explip;p)U expioF,). [4] +2,...) areselected by cycling the phagethroughN values ofm - %’7
(m=0,1,...,N — 1) and shifting the receiver phase in concert
27
where use has been made of Eq. [2] to contract the terms withifrough—m - Ap.
the braces. Applying the second rule for each pulse in a sequence allov

To maintain generality we do not specify the operalaany  one to construct complete phase cycles, which can be ve
further. We just state that it generates a superposition |gfge (I; N;; hereN, denotes the number of phase cycling step

coherences: in thejth cycle). Such a cycle can rarely ever be used in a lon
pulse sequence since the duration of the experiment wou

Uo,U" = > c(pj, PO [5] increase beyond practical limits. Intuition and experience hay

N been used to cut down the number of phase cycling stef

However, this approach is error-prone, since once the puls
(p; and p, refer to the coherence orders before and after tiae not phase shifted independently it becomes very difficult 1

pulse, respectively) and we get predict which pathways are selected and to which extent the
are attenuated.

U,o, U, = explip, d)exp(—idpF,)(X c(p, P, JexpibF,). For all of the following discussion we will use a schematic

o pulse sequence as represented in Fig. 1, which provides a v«

[6] general model: A series af RF-pulses (of any non-secular
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interaction, the relative phase of which can be changed tjerem is the number of all possible pathwaysp is given
experiment, like a pulse sandwich, or a composite pulse tracgnsequently by
with phasesp; separates + 1 periods of free evolution.
Coherence orders change only during the pulses, and remain (Pu—Po) -+ (P~ Pinp)
constant during free evolution. In order to maintain generality Ap = (P2r—P20) -+ (Pan— Pan-1) [15]
we neither restricpy to zero (for the equilibrium state) n@r, 75 | o '
to —1 (as is the common convention for the detection coher- (Pm = Pro) ** (Pmn~ Pmon-1)
ence order). Thus we are allowed to treat parts of pulse se-
quences separately, to examine the appearance of quadrad§i®g Eq. [12] we get
images, or to investigate the CTPs of only one spin species

(e.g., of3C in *H-detected experiments whepg = p,, = 0). b=—Ap-d—d
The coherence orders during the inter-pulse delays (evolu-
tion periods) may be cast in row vector form: Apy -+ Apy b b1z o by
_ | Apa v Apy || ba b da
p= (po’ Py o ’pn)' [9] Apml T Apmn d)nl (l)nl e d)nc
The pulse phases are represented by a column vector :1 :2 Y f? Py Yo - W
_ 1 2 7 c | — ‘wb21 llf22 e lleC
b= (b1 bo s )" [10] A B
Using A [16]
where the matrixp, contains the receiver phases, which are
Ap = (Apy, Apy ..., Apy) evidently the same for all different CTPg.is then a matrix

whose rows represent the signal phases in each step of
phase cycle (columns) for every pathway giverpirows).

.. The relative complex signal amplitude for a CTP with row
the total phase change of the coherence pathway is 9VRBex k in P is then given by

according to the first rule simply by2(4)

=(P1— PoP2—P1, -+ - Pn— Pn-1) [11]

p= =2 (Ap-d) — b =—-Ap-db— o, [12] S = 2}: exp(—ity), [17]
j

h is th . h which amounts to a row-wise vector summation of the phas
where ¢, is the receiver phase. anglesiy in 1.

For the purpose of simulation the effect of an entire phase-l-he pathways can then be sorted by their amplitsge 4nd

cycle shall be cast into a matrix representation. The SeleCt'onc%{nceled pathways may be discarded from further conside

CTPS_ by.phase cycl_ing is achieved t_)y adging up the Sign%'ﬁon. Thus a few simple matrix manipulations suffice to finc
acquired in consecutive experiments, in which the pulse phaﬁ%‘ selected CTPs.

are changed. To describe this process we represent an eNtiffhese results are obtained without reference to a particul

phase cycle in matrix form, spin system and are therefore universally applicable conside
ing just the assumptions described above.

d)ll 4)12 e d)lc
b= b b o Dy [13] Selection by Pulsed Field Gradients
by b Pre The use of PFGs in addition to phase cycling allows one t

cut down the number of phase cycling steps significantly. Sinc

wheren is the number of pulses ardis the number of steps attenuation of unwanted pathways occurs by averaging ov

of the phase cycle. Thieth row of the matrix¢ represents the the sample volume rather than over a number of transien
phase cycle for pulsk in the pulse sequence. instrument instabilities do not cause subtraction artifacts.

As a next step the matrixof all possible CTPs is constructed, Another major difference from the selection by phase cycle

is that the effect of gradients depends on the coherence prde

Po Pu - Piny P rather than on a change of coherence ottigiand also on the
~ | Po P - Ponn P 14 gyromagnetic ratio.
P= ' [14] In the imaging literature the concept of teEective gradient

Po P - Pme-y  Pmn (12) has been introduced to allow one to analyze pulse ar
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gradient sequences separately. However, this has as yet onlyhe relation between the effective gyromagnetic ratio an
been applied to homonuclear spin systems. In order to alloviree composite coherence order (which may be seen as a
more general treatment theffective gyromagnetic ratigs good quantum number under the gradient Hamiltonian) intrc
introduced here. duced in 6) is
The density operatos, can be decomposed into .

y

=-—. 25

0p= 2 0(Pyy v oo Pir v e P s [18] =y =

where the sum runs over all combinationsppfivhich satisfy In order to calculate the effect of an entire gradient sequen
Sims p; = p, j is the index of the nuclear species, gnds the from Eq. [21] we may make use of the fact that only

(partial) coherence order of tijth nuclear species. Each of thechanges during the RF-pulses. A particulgr pathway can

a(P1, -+, P, - -+ P;.) can be written as then'be represented by a vectgt = (v, v5, ..., yh). The
m matrix
0Py« Py e Pinad = L] 0, [19]
1 i i j P ho, hly hy,
h=(ny)=| M Mo P [26]
where the product is a multiple direct produtOy. hox Moy Nz

The gradient Hamiltonian given in units of rads per second,
Hg = 2; % G(U)rl; . (with G(t) denoting the gradient strengthe,yains the time integrals of the gradients in all directions i
andr the location in the sample, which is held constant in th ce ie.
case) acts separately on the subspace of the nuclear species =~

HG E{ J ] hij = J iHGJ' (t)dt, [27]
o, —> opexpg —ipyyr - | G(Hdt |, [20] N

) o wheret; is the time of thath RF-pulse i = 0), andj = X, y,
which follows from Eq. [2] and the substitutiop = v;r - 7 f{ will be a column vector if only single axis gradients are
[ G(t)dt. used.

Substitutingh = [ G(t)dt and combining the transforma- Usingr = (x, v, z)" the location-dependent phase acquire
tions of all nuclear species (Egs. [19], and [20]) we get by a signal following a particulaf pathway is

H -
(P - Py Py )—G> $(r)=9y*-h-r=kx+ky+kz, (28]
Py oDy - P EXP(—iY*h - 1), [21] Wwherek, , , represent spatial frequencies given in rads pe

meter (L2, 13. In order to obtain the total signal amplitude it is
where we have introduced tfedfective gyromagnetic ratio  Necessary to calculate

v =2 Py 22]  exp—iy(r) =1, f,

| = oxpl—i(2) - exp—1(x)  1W(y)).

Other secular interactions commute and may therefore be [29]
treated separately.

In the homonuclear case the effective gyromagnetic ratio hBRe first term is evaluated in a familiar wag) (by
a particularly simple form:

- l Zmax )
Yhomo=P* Y. [23] f,=exp(—iy(2) = ZZWJ exp(—ik,z)dz

~Zmax
The effective gradienG* (12) is related to the effective = siNAK,Zya) - [30]
gyromagnetic ratio through

Since the sinc function is oscillatory and can become zero,
would be possible to obtain results of the attenuation of

*
Gr=1.G. [24] ! O
Y particular pathway that are too optimistic. To calculate the
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upper limit of the attenuation, we use the envelope function of 1
the sinc function: \
_ o8t \
SiNAK, Zna)  if 0 < K, Znal < 5 \
- 2 c
fz = l T [31] g 06 r \
Kzl 2= el 2 \
> \
£ 0.4}
The calculation of the signal attenuation due to transverse ® N
gradients is somewhat more complicated in a standard NMR N
tube due to the circular profile over which averaging has to be 0.2/ \
performed {3). Although thex andy gradients are applied A 7N A D
along orthogonal directions in space (and therefore the spatial 0 /. s NA T XK= —
frequenciek,, k, can be calculated independently) the aver- 0 5 10 15
aging process cannot be factored into independent integra- 06 [rad]

tions overx andy. However, it is possible to calculate the _ . . .

. . . . . FIG. 2. Comparison between the attenuation functions duezgradient
Slgznal agtelr)ganon by u_smg_ an eﬁec_tlve spat|al freqlzjdf/} ¥ and a transverse gradient in a cylindrical sample as a functign=ofk,z,, .
(ki + ki)™ and a weighting function (+ (X/Xmax)?) ™ " 10 and 6 = kx,... respectively. Solid linesz(gradient): |sina)| + envelope
account for the circular profile function (Eq. [31]), dashed lines (transverse gradiend);({9/6] + envelope

function (Eq. [34]).

fxy = exli_ill'(x) - “l’(Y))
2 Xmax 271/2 By choosing a different weighting method it is possible tc
= [1 - ( ) ] exp(—ik,yx)dx account for the nonuniform response throughout the acti
meax Xma H H H
volume (3), gradient nonlinearity, and for non-centered gra
23, (Ko Xor) dients. Here, however, such cases are not considered since t
= w , [32] depend on the specifics of the actual NMR instrument used
xyXmax In order to perform the calculation for ath possible path-
_ ) o ~ways, ay*matrix is constructed representing the pathway:
whereJ, is the Bessel function of the first kind (the solution OB|Ong its rows,
the integral was taken froml4)). Again, we are rather inter-

— Xmax

ested in an upper bound. The relationship % * *
'on 'Yil T 'Yin

2\v? 3m ye=| Y Y ol Y] [36]
Ji(§) = (775) COS<§— 4) [33] Yo Y o Y

holds for large¢ (15), from which we deduce the envelopevheren is again the number of pulses antthe number of
possibley* pathways.

function
According to Eq. [28] we have
2Jl(kxyxmax) .
_ Ky Xmax if 0 = |KyXmax| < 2.44 Yo Yu Y Noe Dy hy,
ny: 2 slz [34] k=45 -h= Yo Ya ot Yo ™ th h,,
771/2(") if 2.44 = [KgXmax - Y LRI EEE TR B NP EERR T
kxy ma. Ymo Ymi """ Ymn hnx~ hny hnz
In Fig. 2 we compare the attenuation functions given by Egs. tlx ::1" tlz
[31] (z gradient) and [34] (transverse gradient). The number =| =y L [37]
2.44 has been obtained by numerically solving for the inter- K Ky Kz

section point of the true function with the approximation.
The overall attenuation due to gradients is then simply tl@‘@nerek contains the spatial frequencies for every pathway an

product every gradient direction.
o It remains to obtain the signal attenuations for the elemen
f=1f,-f,. [35] of k, which is done by the procedure outlined above to calcL
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late the total attenuation for each pathway (Eqgs. [31], [34dpnservative, since it amounts to a case where gradient atte
and [35]). uation of unwanted pathways is approximately .20 * (Eq.

As in the previous section these formulas are obtained witf31], assuming the active length to be 1 cm, i#,,, = 0.5
out direct reference to a particular spin system. The ontyn), which is usually more than necessary.
requirements are that not change between the RF-pulses and Therefore, the gradient pulses will be considered as havir
that a matrixy* be constructed that reflects all possible CTPslelta function shapes with areashof as defined in Eq. [27].
This might be a practical problem due to computer memory For a giveny* pathway we can calculate
limitations in heteronuclear spin systems because the number
of pathways (rows ofy*) can become very large. N og-1

F=ex{-D X 3 (2 vihy)?A,l, [41]

j=xy,zq=1 k=0

Weighting by Diffusion

The effect of self-diffusion must always be considered when
gradient sequences are constructed for the selection of CTwRere theA, are the delays between the starting points of th
especially with large intergradient spacing and large gradiegfigdients. Because of the square in Eq. [38] the information
strengths. We propose a simple scheme to estimate the effélags gradientdirection is lost, which reflects the fact that no
of diffusion upon a PFG sequence. direction may be attributed to isotropic diffusion.

For an arbitrary gradient sequence a phenomenological diflt is now easy to generalize for a matri¥* as in
fusion term is introduced into the Bloch equationg,(16-18, EQ. [36]:
from which the signal attenuation

n g-1
tf (v 2 Fi=exd—-D E E (2 'Y’i(khkj)qu]- [42]
F(t) = ex{ —Df (J y*G(t”)dt”) dt’] [38] j=xy.zq=1 k=0

Diffusion, however, is not the only motional process affect:

may be derived. Diffusion is exploited in diffusion filters, e.g.N9 high-resolution NMR spectroscopy. As we pointed ou
for water suppressior8( 19. More complex situations occur if F€cently the signal attenuation caused by convection can by f
different y* pathways experience different effective gradient€*ceed the one caused by diffusi@d(2]. However, for its

For the following treatment we disregard the effect of gifdescription additional information about the flow profile is
fusion during the gradients since in spectroscopy applicatiopg&ded which is seldom available. We thus defer the treatme
they are usually short compared to the inter-gradient delays A convection to the Appendix, where it can be seen that it
quick estimation should justify this statement. The StejskallClusion requires a minor effort.

Tanner diffusion equationlg) for a gradient echo is .
q 6 9 RF-Pulses and Relaxation

[39]  are equally probable, which ultimately leads to the constructio
of phase cycles which are larger than necessary.

whereA is the delay between the starts of the two gradients,\grfse?;eedcjﬁgreﬁgelsgrc'jservvevghoss:e;ti%ﬁ |r;r;that€;:h\lc\:§asr1ly
and é is the gradient duration (rectangular shape). Neglectiﬁ i ) e g any pa yS. /
diffusion during the gradients is equivalent to omittiégn perfect 90° pulse acting on equilibrium magnetization or lon

this equation. Using plausible choices for experimental paralglgredc'tri];l]()rzfe'zp;?eogiesril\’\"ilrlnorl]leymceri?etﬁlirf?seerepocerzr;]rhese
eters D = 2 x 10 1° m? s~ (diffusion coefficient of ly- yimp program.

sozyme in water at room temperatur8)= 2 ms,G = 0.5 T However, in real situations perfect pulses do not exist due

m~ (along thez-direction), andy = 2.675% 10 rad T+ s ) RF-inhomogeneity and offset dependence caused by fini
We obtain ' ' " power. To account for these imperfections and the attenuatio

of different CTPs by the RF-pulses a complete density matri

5 calculation for AX and AMX spin% systems has been imple-

EXp[D(yGS)Z] = 1.0096, [40] mented. The calculation has to be perf_ormed separately f

3 each CTP. However, we need only consider the pathways tt

are left over after the cancellation and attenuation by pha:

which shows that by neglecting diffusion during the gradiemlycles and gradient sequences (where a threshold value de
we make a negligibly small error. Even with very fast diffusiomines the amount of attenuation that qualifies as cancellatior
(Dp,o0 = 2.3X% 10" °m? s 1) the effect is on the order of 10%. Usually it suffices to retain the strongest few hundred patt
It should be emphasized that the choice of parametersways. Alternatively, the pathway information can be used fo

) The approach outlined above assumes that all possible CT
F= eXp[ —D(yGS)2<A - 3)] ,
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the input into a different simulation platform such as GAMMAcal” weighting factors for the CTPs. The signal attenuatior
(7), where superoperator calculus can be employed (to intrue to the phase cycle is calculated by means of Egs. [15], [1¢
duce detailed relaxation models). and [17], and canceled pathways are discarded (according

It should be borne in mind that by introducing the densitthe specified thresholdpsilon).
matrix, we digress from the principle of generality and intro- The y* matrix is constructed fronp using Eq. [22] and the
duce spin system specifics. Density matrix calculations ageadient damping is calculated using Egs. [37], [31], [34], an
therefore an option in the program that can be enabled at {B8]. Another threshold determines the pathways which are |
discretion of the user. be discarded.

It is possible to include empirical weighting factors that can Diffusion damping is calculated using Eq. [42]. Again, path-
be used to account, e.g., for transverse relaxation or relativays are discarded according to the threshold.
abundance on an at least phenomenological basis (which mayfhe remaining pathways are sorted by their overall sign:
be inaccurate but more general than an exact calculation). intensity and prepared for display and, if requested for furthe

calculations, employ density operator calculations.
Some results of simulations with CCCP are shown in Figs
IMPLEMENTATION AND EXAMPLES 4-9 together with the corresponding pulse sequences.
We chose three representative examples of NMR expel

We have implemented the algorithms outlined above inmaents to be analyzed by the program. First, a stimulated ec
MATLAB program, which we choose to call CCCP (Complet¢STE) diffusion sequence with bipolar gradien®2)( which
Calculation of Coherence Pathways). should highlight the importance of the analysis of diffusior

All experiment dependent parameters are stored in a sepaddmping in the presence of pulsed field gradients. The seco
file, which is specified to the main program on the command lins.a 3D homonuclear PFG 2Q-NOESZ3J, and the third is an
An example of such an input file is displayed in Fig. 3. Detaileiihplementation of HSQCX4-26 to exemplify the application
instructions for creating input files are given in the user manual @f heteronuclear spin systems.
the program, which will be available from the authors. For all simulations the eight strongest pathways are show

The phase cycle is input in the form of vectors for each pul§&e dimensions of the cylinder representing the active volurr
(variable ph), and for the receiverphrec) in analogy to are 10 mm along, diameter of 5 mm. For the calculation
common pulse programming languages. The base of the cyaéshe diffusion attenuation a diffusion coefficientDf= 7 X
can be chosen byase, recbase. 10~ '°m?%s is assumed, which corresponds, e.g., to a mediur

The allow_paths variable is a matrix in which restric- sized protein dissolved in water.
tions and/or attenuations of the allowed CTPs can be enteredin the density matrix calculations some evolution delays
This can be done separately for every nuclear species whicliike the mixing time ort,, t, delays, were set to a value near
indicated by the number in braces. In the example of Fig.13(4J), so that both in-phase and anti-phase terms develop wi
zero order coherence is chosen at the beginning of the pulggroximately equal amplitude. A homonuclear AMX spin
sequence, and after the first pulse only orders ©f 0, —1 are system with the coupling constants 16, 12, and 7 Hz was us
permitted;—1 coherence is detected for the first nucleti$)( for these calculations (with the exception of a heteronucle:
and zero for the second nucledsQ). AMX spin system for the HSQC example in Fig. 9, where the

The gyromagnetic ratios for the nuclear species are inputhiomonuclear and the heteronuclear coupling constants were
the vectorgamma. The grads array contains the gradientand 140 Hz, respectively, and only one proton was coupled
areas between the RF-pulses (starting before the first pulsejhia carbon). No chemical shift evolution is considered since
units of Teslas per meter. The array can contain up i®irrelevant here.
three rows to handle three-axis gradient systems. The arrayAll simulations start out with coherence order zero (equilib.
sampledim contains the sample dimensions (the activeum magnetization). After the first pulse ontyl, and zero
length of the receiver coil iz and the inner diameter of thecoherence orders were allowed. The detector was assumec
NMR tube). The diffusion coefficieniliffconst, and the cleanly select-1QC. If this criterion is left out, the effects of
delays between the gradienisytergrad_dels, are used to quadrature images and/or axial peaks can be simulated eas

calculate the diffusion attenuation of the pathways. To account for imperfect pulses the flip angles were reduce
The density matrix calculations are controlled by the varie the indicated extent. No carrier offset effects were consic
ablesspin_system, pulses, J, del, abundance. ered in the examples given.

epsilon andcutoff determine the threshold to be used In a first simulation of the STE diffusion sequence (Fig. 4,
after the calculation of the phase cycle and the gradient atteve have not included the information about the spin system (r
uations, respectively. density matrix calculation). All coherence orders frei to 3

The program first constructs tlfeematrix (Eq. [14]) consid- were allowed, giving 50,421 possible pathways. The desire
ering the restrictions imposed by the user. The weightirgathways (nos. 4 and 5), which undergo dephasing during tl
factors e11owed_paths) are used to calculate the “empir-first two gradients and rephasing during the last two, are not tl
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function [gamma,range,allow_paths,base,ph,pulses,recbase,grads,phrec,...
cutoff,epsilon,diffconst,intergrad_dels,sampledim,spin_system,J,...
del,abundance]l=hsqc()

ph{1}= [0]; ph{2}= [0]; ph{3}=0; ph{4}=1; ph{6}=[0 2]; ph{6}=[0 0 2 2];
ph{7}=[0 0 0 0 2 2 2 2]; ph{8}=0; ph{9}=ph{7}; ph{10}=0; ph{11}=0;
phrec= [0 2 0 2 2 0 2 0]; base=4; recbase=4;

pulses = [[12211 22112 2]*pi/2%.95;...
[11212 12121 2]1;
allow_paths{1}=[00 111 11111 0 0;
01111 11111 00;
11111 11111 00;.
01111 11111 11;..
00111 11111 00];

allow_paths{2}=[0
1 ...
01111 11111 10];

[N
-
[
[N
(SN
-
[N
-
I
[N
[y

gamma=[2.67522e8 0.67283e8] ;
gradunits=50e-2*1e-3; sampledim=le-2;
grads = 0.1%[0 0 0 0 0 0 gamma(1l)/gamma(2) 0 0 0 O 1]*gradunits;

diffconst=7e-10;
intergrad_dels=[0 0 0 0 0 0 0 0.0037 0 0 0];

spin_system=’AMXinv’; abundance=[1 .01]; J=[16 140];
del=[0.0017 0 0.0017 0 0.015 0.017 0.002 0 0.0017 0 0.0017];

epsilon=1le-4;
cutoff=1e-4;
range=1:8;

return

FIG. 3. Sample input file to the program CCCP for the simulation of an HSQC experiment (Fig. 8).

strongest ones. The diffusion attenuation of these pathway®igfusion damping is weaker for those, as can be seen in tt
exploited for the determination of diffusion coefficients and ttable in Fig. 4. Even triple quantum terms may occur (pathwa
achieve diffusion separation in DOSY experimen®®,(27— nos. 3, 6—8). These pathways are caused by the imperfectic
29). The spoiler gradients duringandT, are used to defocus of the 180° pulses and would lead to erroneous results in tf
everything but zero quantum coherence. It is clear from tlietermination of diffusion coefficients.

graph, however, that pathways will be retained which are Given such an analysis we would be tempted to implemel
affected only by one lobe of the bipolar gradient (nos. 1 and 2 longer phase cycle to remove the unwanted pathways. Ho
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pathways (if compared to the sum of the two desired pathway
they have only up to 0.5% of intensity). These pathways can |
further attenuated by increasing the spoiler gradients during
andT,. The success of this particular pulse sequence and pheé
cycle has been proven by experime20,29, 30.

In Fig. 6 the results of a simulation of a 3D homonucleal
PFG 2Q-NOESY 23) are shown (352,947 pathways have to be
considered, again with a maximum coherence order of 3). Tt
delays and gradient strengths were set such as to reflect th
of the original publication Z3) (with the exception of the
mixing time, andt,, t,, where intermediate values were taker

+1 ys \ 7 \ n g - c
-1 0N r ‘ d * “ " as described above). The pulses were set 3% short in this ca
" \ =, \ 5) Pulses 1-3 perform a NOESY step withlabeling G, spoils
- transverse magnetization during the NOESY mixing time), an
+?+2 7 Y [ \ pulses 3-5 excite double quantum coherence, which evolv
+ - , ) ¥ . . .
40 . \ 6  duringt, and is subsequently transformed to single quantur
" coherence for detection. Due to the imperfections of pulse
1 *§ = F — ——————— (7 SOme undesired pathways (nos. 5-8) are retained with a fail
:;-2 ———1 high intensity (up to 8.9% of the strongest pathways). Thes
» may cause phase errors in the spectra. In an attempt to att
. +2 4 1
No= I — = ©
_3—2 \ | 1 ) 2 3 4 ) 5 6 7
el i<l 7t ] c<ef <] T Iwﬂ".
No. total ¥ | norm pc grad diff : - : G :
105971 | 45| 1.0000 | 0.7071 | 1.0000 | 0.8445 g A "z - LA "z s
2105971 | 315 | 1.0000 | 0.7071 | 1.0000 | 0.8445 G, Gy, 6, N a6
3| 0.5150 0| 0.8624 | 1.0000 | 1.0000 | 0.5150 “ 4 . » .
405150 | 0] 0.8624 | 1.0000 | 1.0000 | 0.5150 SRS — M
5| 0.5150 0 ]0.8624 | 1.0000 | 1.0000 | 0.5150 » .
6| 05150 | 0 |0.8624 | 1.0000 | 1.0000 | 0.5150 R — — \ @)
7| 0.4898 0 | 0.8202 | 1.0000 | 1.0000 | 0.4898 . -
8 | 0.4898 0 | 0.8202 | 1.0000 | 1.0000 | 0.4898 : 0= / A - \ )}
FIG. 4. CCCP simulation of a stimulated gradient echo diffusion sequence! ; —7 \ . . 7 \ (4
employing bipolar gradient pulses ramped to give a pseudtimension
(rectangles with a diagonal) and a longitudinal eddy current dElajarrow  +1 | 7 v 7 1 )
and wide bars represent 90 and 180 degree pulses. All gradients are labetéd ~
according to the direction along which they are appli€d; and Gy are 4+ 0 7 \ ©
spoiler gradients used to defocus transverse magnetization dlrargl T.. -1 / A - >
Phase cycled(1l) = X, X, ¥, ¥, =X, =X, =Y, =V; ¢(2) =y, =X, =X, —V, =z \ 7 . @)
Y X XY $(3) = o(7) = X d(4) = =X, =X, =Y, =Y, #(5) = —y, —y, \
X, X; ¢(6) = —X; ¢(receiver)= 2(x, —X), 2(—X, x). The gradient strengths “
were 0.25 T/m for each of the bipolar gradient lobes (gradiésts —G,,,  _4 0 =X A A —X f \ (8)
Gz4, —Gzs), 0.025 T/m for each of the spoiler gradien®&,g, Gy3), duration
1 ms. The inter-gradient delays were 2, 2, 50, 2, and 2 ms. No density matrixyg. total Y| norm pc grad diff pulse
calculation was made. The following signal attenuations are given in the table 1 [ g.2349 | 180 | 1.0000 | 1.0000 | 1.0000 | 0.5150 | -0.4562
at the bottom: total—total signal attenuation; norm—normalized to the stron- 5 | 9.2349 | 180 | 1.0000 | 1.0000 | 1.0000 | 0.5150 | -0.4562
gest _pathwa_y, pc—attengation due tq pha_se cycle; grad—attenuation due tothe 3 | 0.0024 | 180 | 0.0104 | 1.0000 | 0.0233 | 0.5101 | 0.2053
gradients, diff—attenuation due to diffusiofs—phases of the pathways. 4| 0.0022 0| 0.0096 | 1.0000 | 0.0233 | 0.5101 | -0.1888
5| 0.0021 0 | 0.0089 | 1.0000 | 0.0233 | 0.5101 | -0.1754
ever, we have not yet considered that the RF-pulses cause arp | 00021 1225 | 0.0087 | 0.7071 | 0.0233 | 0.5003 | 0.2440
additional attenuation of the CTPs. In a second simulation run 7] 00021 135 1 0.00871.0.7071 | 0.0233 | 0.5093 | 0.2440
: 8| 0.0019 | 180 | 0.0082 | 1.0000 | 0.0233 | 0.5101 | 0.1613

we included a density matrix calculation for an AMX spin

system using pulses with flip angles which were 5% short (toFIG.5. CCCP simulation of a stimulated gradient echo diffusion sequenc

accommodate imperfect pulses). The results are displayed"’iW

Fig. 5. In this analysis the desired pathways end up in the fi

bipolar gradient pulses and a longitudinal eddy current delay. Th
seguence and parameters are the same as those in Fig. 4 but an AMX den
R4trix calculation was employed with all pulses 5% short. The evolutior

two positions. The strongest remaining undesired pathwayays were 2, 2, 15, 2, 2, and 15 ms. The column “pulse” in the table contai
have now an intensity of up to 1% as compared to the desingd attenuation factors due to the density matrix calculations.
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o2 3 4 5 L 6 7 8 detection int, can only be performed by changing the polarity
Rl 1 JcB<] % :sfs]s l?’—“w« of G, andG; in consecutive scans as mentioned 28)( The
G Gy, : Gy A\ result of such a scan is displayed in Fig. 8. The coherenc
G G orders during, are opposite.
Z2 Z4 .. . . .
" —— . A word is in order about the differences in the attenuation
ﬂ_g - b S | — (1) of the first four pathways (the desired pathways) in Figs. 6—¢
They can be explained by the fact that the pulses are 3% shc
" ~ /) X [\ (» Whichcauses them to excite positive and negative coheren
T - orders with different intensities. These differences are usual
?2 f ‘ — not observed since the flip angle error due to RF-inhomogen
-1 02N F A=t = — ) ity is averaged over the entire sample volume.
" The last example shows the pathway selection for HSQ
Ho \ o O | ".‘_,'_\ (4) (Fig. 9). Here, the allowed coherence orders range frarto
2 2 for protons and from-1 to +1 for carbons (151,875 path-
R . p— —— 5) ways). The parameters for this simulation are shown in Fig. :
o ‘—' It is important to note that the strongest pathways all involv
jE = ; — == © transfers in the carbon coherence orders, meaning that prot
a*2 — 1 ' 2 . 3 4 5 ; 6 7 8
_1_2—\ - / | W—_— \K‘_'l \ 7) RFI 1 I m IflTl 2 slalﬁla_vw
2 . G Gy G A\
ﬂ _g = h \—/;I 74\\:_,] -\ - — (8) Gys Gye Gz Gz
| | e\ M\ 1)
No. total | % | norm pc grad diff pulse -2 - d
1{0.0217 | 180 | 1.0000 | 1.0000 | 1.0000 | 0.9864 | -0.0220 2 :
2/ 0.0215 | 180 | 0.9929 | 1.0000 | 1.0000 | 0.9864 | -0.0218 o -T—.“—,_,'—kg\_:."\—”f @)
3| 0.0214 | 180 | 0.9845 | 1.0000 | 1.0000 | 0.9864 | -0.0217 -2
40.0212 | 180 | 0.9785 | 1.0000 | 1.0000 | 0.9864 | -0.0215 2 — \ — —
510.0019 | 0| 0.0887 | 1.0000 | 1.0000 | 0.9864 | 0.0020 0= 7 —J -\ @)
60.0019 | 0 |0.0883 | 1.0000 | 1.0000 | 0.9864 | 0.0019 2
70.0018 | 180 | 0.0818 | 1.0000 | 1.0000 | 0.9864 | -0.0018 a2 1 \
8 | 0.0018 | 180 | 0.0815 | 1.0000 | 1.0000 | 0.9864 | -0.001 eSS = =y
FIG. 6. CCCP simulation of a 3D homonuclear PFG 2Q-NOEZ8)( +3., i —— . =
The phase cycle ig(1) = 4x, 4(—x); ¢(8) = X, =y, —X, y; $(receiver) j oL X 1 ',' \‘_'.'_\ — (5)
= 2(x, —x), 2(=x, x); all other phases remain constankalhe parameters -3~ B FE—
were taken mainly from23), i.e.,_GXl = 0j05_T/m, Gz, = —G,3 = 0.05 a —
T/m, G, = 0.2 T/m. The gradl_ent duratio8 is 1.2'_5 ms. Only th_e delz_alys +1 *ﬁ - ,,,,,_,,,,T,,,,’,,,,,,_, —mr—y—',—\ )
bet\A{eenGzz, Gzs, and Gy, arg important for the diffusion damp_mg (since :;_2 =i
Gy, is orthogonal to them), which were 1.35, and 2.7 ms, respectively. For the
density matrix calculations the pulses were set 3% short, and the followingj,,g  m—E— x S —
inter-RF-pulse delays were used: 15, 15, 15, 15, 7.5, 1.35, 1.35, and 1.35 m_s._g o - g ‘xl‘_'.# """ ‘\‘_'l_\ -7
-3
. . B, —
uate then further we introduce two new gradie@s,andGg, o —1 ‘\\ I = ®)
orthogonal to the other ones, into the pulse sequence. The? = —
results of this new simulation are displayed in Fig. 7, where it v ,
0. total ¥ | norm pc grad diff pulse

is seen that we have effectively _suppressed the trouble_some1 00216 1180 11,0000 10000 T 10000 | 0.9835 10,0220
pathways. However, new, undesired pathways appear in the 2 0.0215 | 180 | 0.9929 | 1.0000 | 1.0000 | 0.9835 | -0.0218
positions 5—-8. These involve triple quantum coherence be- 3 |0.0213 | 180 | 0.9845 | 1.0000 | 1.0000 | 0.9835 | -0.0217
tween the pulses 3 and 5, which is refocused by pulse 4. 4| 00212180 0.9785 | 1.0000 | 1.0000 | 0.9835 | -0.0215

heref h h d i ) h 510.0014 | 00.0654 | 1.0000 | 1.0000 | 0.9606 | 0.0015
Therefore t ese pgt ways do not give rise to phase errors. ¢ | 90014 | 0| 0.0654 | 1.0000 | 1.0000 | 0.9606 | 0.0015
However, since their phase is opposite to the desired pathways 7 | 0.0012 | 0| 0.0542 | 1.0000 | 1.0000 | 0.9606 | 0.0012
they may cause Signa' attenuation. 8| 0.0012 0| 0.0542 | 1.0000 | 1.0000 | 0.9606 | 0.0012

T_he desired pathways 1-4 have coherence_qrdersbf . FIG. 7. CCCP simulation of a 3D homonuclear PFG 2Q-NOE28)(
dU_”ng t; and can thus be used for phase sensitive de_t_ecnﬂ{b parameters are the same as those in Fig. 6 but two new gradepts,
using TPPI 81, 32 or States—TPPI33, 39. Phase sensitive G,; = 0.05 T/m, were inserted (with a spacing of 15 ms).
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L T - 6 7 8 effects of convection can be included easily as is shown in tt
e Lt 1 "m QcB-] % a|5|5|5_ww Appendix, which can be useful for the design of gradien
G Gy, G,, 2\ enhanced experiments with convection compensagonZ).
Gy Gyg G,y Gy The treatment of diffusion is very important particularly for the
a2 simulation and optimization of NMR diffusion pulse sequence
R S ,-‘ W)
-2 -
4% e — 2 4 6 . s
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+?+2 = . j 0- \— - H @
o= . ——1 —X @ 1 13
== ' G = \— ©
+3 | +1 Y —
+2 1
S— S N 4 0 ~_7 H 4
:: 0 =y 7 \‘ ll ‘I| 'I AV (8) 1 : ( )
a2  — j 0 == s \ 135
No. total ¢ | norm pc grad diff pulse o ~ H (5
1]0.0238 | 180 | 1.0000 | 1.0000 | 1.0000 | 0.9835 | -0.0242 - —
21 0.0236 | 180 | 0.9930 | 1.0000 | 1.0000 | 0.9835 | -0.0240 j} 0 / s ¥
310.0235 | 180 | 0.9863 | 1.0000 | 1.0000 | 0.9835 | -0.0239
4 0.0233 | 180 | 0.9805 | 1.0000 | 1.0000 | 0.9835 | -0.0237 S T\ W (@)
510.0016 | 0 0.0670 | 1.0000 | 1.0000 | 0.9606 | 0.0017 :]
6| 0.0016 | 0 |0.0670 | 1.0000 | 1.0000 | 0.9606 | 0.0017 Lo ! — B
7/0.0013 | 0 0.0555 | 1.0000 | 1.0000 | 0.9606 | 0.0014
8]0.0013 | 0 0.0555 | 1.0000 | 1.0000 | 0.9606 | 0.0014 f: P — o e——— - T
FIG. 8. CCCP simulation of a 3D homonuclear PFG 2Q-NOE%8)( ﬂ 0 7 — 8¢
The parameters are the same as those in Fig. 7 but the polarity of the gradients
G,, andG_; is flipped, leading to echo type coherence selection duritigs *1 0 —~—p— y— N H (8)
opposed to anti-echo type in Fig. 7). “
0 7/ \ 13C
-1 | WY Sa— -
signals not attached t&*C are well attenuated. The density No. | total | ¢ | norm pc| grad| diff | pulse

matrix calculation was performed using an AMX spin system ; 0.4491 | 90 | 1.0000 | 1.0000 | 1.0000 | 0.9995 | 0.4493

consisting of twa'H and one*3C nuclei. An abundance factor

0.4489 | 90 | 0.9995 | 1.0000 | 1.0000 | 0.9995 | -0.4491
0.0039 | 270 | 0.0087 | 1.0000 | 1.0000 | 0.9995 | -0.0039

of 1% was used to account for the rare natural abundance of 4 | ¢.g039 | 270 | 0.0087 | 1.0000 | 1.0000 | 0.9995 | 0.0039
13C. Only one proton (the one coupled to the carbon) was 5 |0.0039 | 270 | 0.0086 | 1.0000 | 1.0000 | 0.9995 | 0.0039

detected. Ideal decoupling was assumed.

CONCLUSION

6 | 0.0038 0| 0.0085 | 1.0000 | 1.0000 | 0.9995 | 0.0038
710.0038 | 270 | 0.0084 | 1.0000 | 1.0000 | 0.9995 | -0.0038
8| 0.0038 | 180 | 0.0084 | 1.0000 | 1.0000 | 0.9995 | -0.0038

FIG. 9. CCCP simulation of a HSQC experiment including a density

T_he formalism presented here is a Va|Uf_ib|e tool for thﬁ‘{_;ltrix calculation for an AMX system. The phase cycle@) = y; ¢(5) =
design of optimized phase cycles and gradient sequences,ifrx; ¢(6) = x, x, —x, —x; $(7) = $(9) = 4x, 4(—x); d(receiver)=
pulse sequences applicable to different kinds of nuclei and sgi#f, —x), 2(=x, x); all other phases are constantatFor the diffusion
systems (in NMR and EPR Iikewise). The method is bot\ﬁaghtmg only the delay + 7, which was setto 3.7 ms, is relevant. The pulses

general and time efficient. It involves the construction of a\“

ere set 5% short, and the evolution delays 1.7, 1.7, 15, 17, 2, 1.7, and 1.7
ere used. The gradient strengths were 0.199, and 0.05 T/m at 1 ms durati

possible CTPs, the calculation of their attenuation by phags: the eight strongest pathways the partial coherence orders of protons ¢
cycling, gradient sequences, diffusion, and RF-pulses. Téwbons are displayed separately.
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and applications of diffusion separated NMRO(27-29 as We have treated the influence of the zeroth moment in the ma

well as diffusion filters 8, 19. text by calculating the attenuation of the different CTPs by th
The pathways can be visually inspected in a graphical digradient sequence. We have not yet, however, consider

play and empirical knowledge may be used to filter out possiigher moments. All higher moments introduce additional cor

bly redundant and irrelevant information. If exact results astant phase shifts if, a, etc. are kept the same for the duratior

spin dynamics are required a detailed simulation may be ay-the experiment, and uniform over the sample volume. Fc

pended using the results of our general calculations, whidimplicity we shall be concerned only with being constant

however, implies giving up generality. This algorithm has beaand non-zero (i.e., no flow acceleration). In this case only

implemented in a MATLAB program (CCCP), which is availphase factor proportional to the velocity is introduced. When

able from the authors upon request. velocity distributionf(v) exists in the sample, the ensemble
The approach is practically limited by the amount of comaverage results in the signal attenuation

puter memory available (the number of possible CTPs rises to

the power of the number of pulses involved). When the mem-

ory limit is reached, the problem can still be solved by ana- E= Jf(v)exp(—itp(v))dv, [45]

lyzing parts of the pulse sequences separately, since the coher-

ence orders before the pulses and at the end can be specified by

the user at will.

We believe that the CCCP approach fills a gap in the field \(/)vpere the mtegra_l 'S t?kin 9ver t,he,rar?ges of the veloaities
. . L vV, V,, andy(v) = vfgy*(t')G(t")t'dt’.
NMR simulations. As we could show, the examination of the” | 2 AT . .
Using the same simplifying assumptions as those used wi

relgnve attenuation of different CTPs caused by _dlfferent f'{he diffusion weighting (neglect of motion during the gradien
tering techniques is of valuable help for the design of phassl es) we calculate(v) as
cycles and gradient sequences. Using our method we optimi?edS

an experiment published in Ref23) and propose here an

improvement of the CTP selection method for a 3D homo- n
nuclear PFG 2Q-NOESY experiment, which may be useful in P(v) = v > yi(hy hy, hy)Tt, [46]
practice. i=1

APPENDIX whereh;; is defined in Eq. [27]y = (v, v, V,), andt; is the

] time of theith RF-pulse.
We have shown recently that the effect of convection on the |, order to calculate the signal attenuation we have to mak

signal attenuation in gradient enhanced spectra can be Vgr/assumption about the velocity distribution. A simple case |
strong @0, 2). Here, we present a simple mathematical dg; yniform distribution between-v, . and v, (in the z-
scription thereof and a method for the incorporation into ”’lﬁrection) and no motion in the- andy-directions:

formalism presented in the main part of the article.
A signal following a particulary* pathway acquires the
locationr dependent phase 1 if [v,| = v
f(V) = S(Vx) . 8(Vy) "1 2Vmax ‘ e
0 if|Vy] > Vimax

[47]

t
¢ (r) =jv*(t’)G(t’)-r(t’)dt’- [43]
0 The signal attenuation is then calculated from Eq. [45] to
Using the expansiom = ro, + vt + 3 at? + - - - we can
write F= Smdd’(vmax))y [48]
t t which can be done separately for everypathway by use of
g=ro | y*(U)GEA)dU +v | y*(t")G({")t'dt’ Eq. [46].
J0 s <0 s
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