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The selection of well-defined coherence transfer pathways is an
essential feature of all but the simplest NMR and EPR pulse
sequences. This selection can be achieved by phase cycling and by
pulsed field gradients. The properties of the RF-pulses (flip angle,
offset effects, inhomogeneity) and transport phenomena (diffu-
sion, flow) in conjunction with gradients cause a weighting of the
different coherence transfer pathways. We present a method by
which the selection process can be simulated efficiently and visu-
alized easily. In its basic form it involves straightforward matrix
manipulations without reference to the density matrix and the
particular spin system. This method is implemented in a MAT-
LAB program, called CCCP (Complete Calculation of Coherence
Pathways). © 1998 Academic Press

INTRODUCTION

The concepts of coherence order and coherence transfer
pathways (CTPs) are important both in pulsed NMR and EPR
experiments (1–5). The magnetization trajectories in terms of
coherence orders are used to visualize the effects of pulse
sequences. New pulse sequences are usually designed by des-
ignating wanted and unwanted CTPs. RF-pulses are in general
nonselective with respect to the excitation or interconversion of
different coherence orders, which necessitates the use of co-
herence pathway filtering techniques. For example, without
this filtering a general three pulse NMR experiment contains
simultaneously the information of MQF–COSY, NOESY, and
Relayed-COSY experiments. Furthermore, no distinction be-
tween echo and anti-echo signals can be made without special
coherence filtering techniques (1–3). Only the selection of the
appropriate CTPs makes an experiment specific. Undesired
CTPs give rise to spurious echoes in EPR (4, 5).

Phase cycling (1, 2) and sequences of pulsed field gradients
(PFGs) (3) are the two most important coherence filtering
techniques. Phase cycles allow the selection of parallel path-
ways but may take a long time, especially in sequences with
many pulses, when high coherence orders and good selectivity
(in terms of CTPs) are desired. Subtraction errors can become

severe, especially with long intertwined phase cycles giving
rise to t1-noise in two-dimensional spectra.

Pulsed field gradients usually achieve the desired filtering in
a single transient but selectivity may be limited with multiple
filters, especially when only single axis gradient hardware is
used (3, 6).

Additionally, the properties of the RF-pulses (flip angle,
shape, offset effects, inhomogeneity) and translatory motion
cause a weighting of the different CTPs.

A compromise between CTP selectivity and time require-
ment can be achieved by combining pulsed field gradients and
phase cycles while reducing the number of phase steps as much
as possible. Sometimes incomplete phase cycles in combina-
tion with gradients can be developed empirically, partly by trial
and error. In these cases it becomes difficult to rationalize the
selection process, in particular for a general spin system. It is
desirable to use simulations for reasons of speed, reproducibil-
ity, and completeness with respect to the possible CTPs.

A straightforward approach would be to use an existing
simulation package like, e.g., GAMMA (7), to calculate the
evolution of the density matrix for a full phase cycle. However,
this method does not yield the required information (the rela-
tive amplitudes of the different CTPs) directly. A full
GAMMA simulation of all possible CTPs is not practical
because of time and computer memory constraints. The num-
ber of possible CTPs in a pulse sequence is of the order (2pmax

1 1)n (wherepmax is the maximum possible coherence order,
andn is the number of pulses). Computer algebra approaches
have been used to calculate the evolution of product operators
(8, 9), which, however, are even less appropriate for this prob-
lem since the number of possible product operator terms rises
much faster than the number of CTPs (9). Also, the final
recombination and simplification of the algebraic expressions
involves excessive use of trigonometric combination rules and
is therefore very slow.

The purpose of the work presented in this article was to
devise an effective scheme which can be used to simulate the
CTP selection process and which involves only simple matrix
calculations. Our goal was to retain as high a degree of gen-1 To whom correspondence should be addressed.
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erality as possible. We eventually obtained a method which can
be used without reference to a particular spin system.

THEORY

Selection by Phase Cycling

Every density matrix can be expanded in a series of different
components according to their behavior under rotation around
the preferredz-axis (2, 10, 11),

s 5 O
p52pmax

pmax

sp , [1]

wherepmax is the maximum possible coherence order (equal to
the number of spins in case of a spin1

2
only system). Upon

rotation around thez-axis thesp acquire only a phase (11),
since

exp~ifFz!spexp~2ifFz! 5 spexp~ipf ! , [2]

whereFz5( j I zj is the z-component of the total angular mo-
mentum.

The effect of an RF-pulse is more complicated and, in
general, may cause mixing of all coherence orders. Without
specifying the nature of the RF-pulse we may represent the
unknown transformation by a unitary operator in the rotating
frame under consideration of its relative phasef:

Uf 5 exp~2ifFz!U exp~ifFz! . [3]

The evolution of an initial operatorspj
during Uf is then

Ufspj
Uf

† 5 exp~2ifFz!U

3 $exp~ifFz!spj
exp~2ifFz!%U

†exp~ifFz!

5 exp~2ifFz!Uspj
exp~ipj f !U†exp~ifFz! . [4]

where use has been made of Eq. [2] to contract the terms within
the braces.

To maintain generality we do not specify the operatorU any
further. We just state that it generates a superposition of
coherences:

Uspj
U† 5 O

pk

c~ pj , pk!spk
[5]

(pj and pk refer to the coherence orders before and after the
pulse, respectively) and we get

Ufspj
Uf

† 5 exp~ipj f!exp~2ifFz!~O
pk

c~pj, pk!spk
!exp~ifFz!.

[6]

Applying Eq. [2] again, we have

Ufspj
Uf

† 5 O
pk

c~ pj, pk!spk
exp~2iDpf ! , [7]

whereDp 5 pk2pj. This formula represents the well-known
rule of phase cycling:

A signal passing through a coherence transfer (by a pulse or sequence of
pulses) ofDp reacts to a phase changef of the pulse (or the sequence of
pulses) by changing its phase by2Dpf.

The phase change of the signal for a pulse phase shift off
5 m 2p/N (representing themth step in anN step phase cycle)
therefore is

Dc 5 2m
2p

N
~Dp 1 kN! 5 2m

2p

N
Dp 2 m2pk . [8]

The first term in the sum can be compensated by shifting the
receiver phase to select a desired change in coherence order
Dp. Coherence order changes ofDp 1 kN (k 5 0, 61, 62)
will also be selected, since the second term is equal to multi-
ples of 2p, while it is running through a complete cycle fork
5 1

N
, 2

N
, . . . , N21

N
which leads to the cancellation of the

coherence order changes in between.
The second rule follows immediately:

Coherence order changes ofDp 1 k z N (N 5 2, 3, . . . ; k 5 0, 61,
62, . . . ) areselected by cycling the phasef throughN values ofm z

2p

N
(m 5 0, 1, . . . , N 2 1) and shifting the receiver phase in concert
through2m z Dp2p

N
.

Applying the second rule for each pulse in a sequence allows
one to construct complete phase cycles, which can be very
large () j Nj; hereNj denotes the number of phase cycling steps
in the j th cycle). Such a cycle can rarely ever be used in a long
pulse sequence since the duration of the experiment would
increase beyond practical limits. Intuition and experience have
been used to cut down the number of phase cycling steps.
However, this approach is error-prone, since once the pulses
are not phase shifted independently it becomes very difficult to
predict which pathways are selected and to which extent they
are attenuated.

For all of the following discussion we will use a schematic
pulse sequence as represented in Fig. 1, which provides a very
general model: A series ofn RF-pulses (of any non-secular

FIG. 1. Simple scheme for a general pulse sequence.n pulses separate
n 1 1 periods of free evolution during which gradient pulsesGi may be
switched on with different strengths and directions. The coherence orderspi

(and the effective gyromagnetic ratiosg*) can only change during the pulses.
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interaction, the relative phase of which can be changed by
experiment, like a pulse sandwich, or a composite pulse train)
with phasesf i separatesn 1 1 periods of free evolution.

Coherence orders change only during the pulses, and remain
constant during free evolution. In order to maintain generality
we neither restrictp0 to zero (for the equilibrium state) norpn

to 21 (as is the common convention for the detection coher-
ence order). Thus we are allowed to treat parts of pulse se-
quences separately, to examine the appearance of quadrature
images, or to investigate the CTPs of only one spin species
(e.g., of13C in 1H-detected experiments wherep0 5 pn 5 0).

The coherence orders during the inter-pulse delays (evolu-
tion periods) may be cast in row vector form:

p 5 ~ p0, p1, . . . , pn! . [9]

The pulse phases are represented by a column vectorf:

f 5 ~f1, f2, . . . , fn!T. [10]

Using

Dp 5 ~Dp1, Dp2, . . . , Dpn!

5 ~ p1 2 p0, p2 2 p1, . . . , pn 2 pn21! [11]

the total phase change of the coherence pathway is given
according to the first rule simply by (2, 4)

c 5 2 O
j

~Dpj z f j ! 2 fr 5 2Dp z f 2 fr , [12]

wherefr is the receiver phase.
For the purpose of simulation the effect of an entire phase

cycle shall be cast into a matrix representation. The selection of
CTPs by phase cycling is achieved by adding up the signals
acquired in consecutive experiments, in which the pulse phases
are changed. To describe this process we represent an entire
phase cycle in matrix form,

f̂ 5 1 . . . . . . . . . . . . . . . .

f11 f12 · · · f1c

f21 f22 · · · f2c

fn1 fn1 · · · fnc

2 , [13]

wheren is the number of pulses andc is the number of steps
of the phase cycle. Thekth row of the matrixf̂ represents the
phase cycle for pulsek in the pulse sequence.

As a next step the matrixp̂ of all possible CTPs is constructed,

p̂ 5 1 . . . . . . . . . . . . . . . . . . . . . .

p10 p11 · · · p1~n21! p1n

p20 p21 · · · p2~n21! p2n

pm0 pm1 · · · pm~n21! pmn

2 , [14]

wherem is the number of all possible pathways.Dp̂ is given
consequently by

Dp̂ 5 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .

~ p11 2 p10! · · · ~ p1n 2 p1~n21! !
~ p21 2 p20! · · · ~ p2n 2 p2~n21! !

~ pm1 2 pm0! · · · ~ pmn 2 pm~n21! !
2 . [15]

Using Eq. [12] we get

ĉ 5 2Dp̂ z f̂ 2 f̂r

5 2 1 . . . . . . . . . . . . . .

Dp11 · · · Dp1n

Dp21 · · · Dp2n

Dpm1 · · · Dpmn

2 z 1 . . . . . . . . . . . . . . . .

f11 f12 · · · f1c

f21 f22 · · · f2c

fn1 fn1 · · · fnc

2
2 1 . . . . . . . . . . . . . .

f1
r f2

r · · · fc
r

f1
r f2

r · · · fc
r

f1
r f2

r · · · fc
r 2 5 1 . . . . . . . . . . . . . . . .

c11 c12 · · · c1c

c21 c22 · · · c2c

cm1 cm2 · · · cmc

2 ,

[16]

where the matrixf̂r contains the receiver phases, which are
evidently the same for all different CTPs.ĉ is then a matrix
whose rows represent the signal phases in each step of the
phase cycle (columns) for every pathway given inp̂ (rows).

The relative complex signal amplitude for a CTP with row
index k in p̂ is then given by

sk 5 O
j

exp~2ickj ! , [17]

which amounts to a row-wise vector summation of the phase
anglesckj in ĉ.

The pathways can then be sorted by their amplitude |sk|, and
canceled pathways may be discarded from further consider-
ation. Thus a few simple matrix manipulations suffice to find
the selected CTPs.

These results are obtained without reference to a particular
spin system and are therefore universally applicable consider-
ing just the assumptions described above.

Selection by Pulsed Field Gradients

The use of PFGs in addition to phase cycling allows one to
cut down the number of phase cycling steps significantly. Since
attenuation of unwanted pathways occurs by averaging over
the sample volume rather than over a number of transients,
instrument instabilities do not cause subtraction artifacts.

Another major difference from the selection by phase cycles
is that the effect of gradients depends on the coherence orderp
rather than on a change of coherence orderDp and also on the
gyromagnetic ratio.

In the imaging literature the concept of theeffective gradient
(12) has been introduced to allow one to analyze pulse and
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gradient sequences separately. However, this has as yet only
been applied to homonuclear spin systems. In order to allow a
more general treatment theeffective gyromagnetic ratiois
introduced here.

The density operatorsp can be decomposed into

sp 5 O s ~ p1, . . . , pj, . . . pjmax! , [18]

where the sum runs over all combinations ofpj which satisfy
(j51

jmax pj 5 p, j is the index of the nuclear species, andpj is the
(partial) coherence order of thej th nuclear species. Each of the
s ( p1, . . . , pj, . . . pjmax

) can be written as

s ~ p1, . . . , pj, . . . pjmax! 5 P
j

spj
, [19]

where the product is a multiple direct product (10).
The gradient Hamiltonian given in units of rads per second,

HG 5 (j g j G(t )r I j ,z (with G(t ) denoting the gradient strength
andr the location in the sample, which is held constant in this
case) acts separately on the subspace of the nuclear speciesj ,

spj
O¡
HG

spj
expF2ipj g j r z EG~t !dtG , [20]

which follows from Eq. [2] and the substitutionf 5 g j r z
* G(t )dt.

Substitutingh 5 * G(t )dt and combining the transforma-
tions of all nuclear species (Eqs. [19], and [20]) we get

s ~ p1, . . . , pj, . . . pjmax!O¡
HG

s ~ p1, . . . , pj, . . . pjmax!exp~2ig* h z r ! , [21]

where we have introduced theeffective gyromagnetic ratio

g* 5 O
j

pj g j . [22]

Other secular interactions commute and may therefore be
treated separately.

In the homonuclear case the effective gyromagnetic ratio has
a particularly simple form:

g*homo5 p z g . [23]

The effective gradientG* (12) is related to the effective
gyromagnetic ratio through

G* 5
g*

g
z G . [24]

The relation between the effective gyromagnetic ratio and
the composite coherence orderpc (which may be seen as a
good quantum number under the gradient Hamiltonian) intro-
duced in (6) is

pc 5
g*

g
. [25]

In order to calculate the effect of an entire gradient sequence
from Eq. [21] we may make use of the fact thatg* only
changes during the RF-pulses. A particularg* pathway can
then be represented by a vectorg* 5 (g*0, g*1, . . . , g*n). The
matrix

ĥ 5 ~hij ! 5 1 . . . . . . . . . .

h0x h1y h1z

h1x h2y h2z

hnx hny hnz

2 [26]

contains the time integrals of the gradients in all directions in
space, i.e.,

hij 5 E
ti

ti11

Gj ~t !dt , [27]

whereti is the time of thei th RF-pulse (t0 5 0), andj 5 x, y,
z. ĥ will be a column vector if only single axis gradients are
used.

Usingr 5 ( x, y, z)T the location-dependent phase acquired
by a signal following a particularĝ pathway is

c ~r ! 5 g* z ĥ z r 5 kxx 1 kyy 1 kzz, [28]

where kx,y,z represent spatial frequencies given in rads per
meter (12, 13). In order to obtain the total signal amplitude it is
necessary to calculate

exp~2ic ~r !! 5 fz fxy

5 exp~2ic ~ z!! z exp~2ic ~ x! 2 ic ~ y!! .

[29]

The first term is evaluated in a familiar way (2) by

fz 5 exp~2ic ~ z!! 5
1

2zmax
z E

2zmax

zmax

exp~2ikzz!dz

5 sinc~kzzmax! . [30]

Since the sinc function is oscillatory and can become zero, it
would be possible to obtain results of the attenuation of a
particular pathway that are too optimistic. To calculate the
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upper limit of the attenuation, we use the envelope function of
the sinc function:

f#z 5 5 sinc~kzzmax! if 0 # |kzzmax| ,
p

2
1

|kzzmax|
if

p

2
# |kzzmax| .

[31]

The calculation of the signal attenuation due to transverse
gradients is somewhat more complicated in a standard NMR
tube due to the circular profile over which averaging has to be
performed (13). Although thex and y gradients are applied
along orthogonal directions in space (and therefore the spatial
frequencieskx, ky can be calculated independently) the aver-
aging process cannot be factored into independent integra-
tions overx and y. However, it is possible to calculate the
signal attenuation by using an effective spatial frequencykxy 5
(kx

2 1 ky
2)1/ 2 and a weighting function (12 (x /xmax)

2)1/ 2 to
account for the circular profile

fxy 5 exp~2ic ~ x! 2 ic ~ y!!

5
2

pxmax
E

2xmax

xmax F1 2 S x

xmax
D 2G 1/ 2

exp~2ikxyx!dx

5
2J1~kxyxmax!

kxyxmax
, [32]

whereJk is the Bessel function of the first kind (the solution of
the integral was taken from (14)). Again, we are rather inter-
ested in an upper bound. The relationship

J1~j ! < S 2

pjD
1/ 2

cosSj 2
3p

4 D [33]

holds for largej (15), from which we deduce the envelope
function

f#xy 5 5
2J1~kxyxmax!

kxyxmax

if 0 # |kxyxmax| , 2.44

p21/ 2S 2

kxyxmax
D 3/ 2

if 2.44 # |kxyxmax| .
[34]

In Fig. 2 we compare the attenuation functions given by Eqs.
[31] (z gradient) and [34] (transverse gradient). The number
2.44 has been obtained by numerically solving for the inter-
section point of the true function with the approximation.

The overall attenuation due to gradients is then simply the
product

f# 5 f#z z f#xy. [35]

By choosing a different weighting method it is possible to
account for the nonuniform response throughout the active
volume (13), gradient nonlinearity, and for non-centered gra-
dients. Here, however, such cases are not considered since they
depend on the specifics of the actual NMR instrument used.

In order to perform the calculation for allm possible path-
ways, a ĝ*-matrix is constructed representing the pathways
along its rows,

ĝ* 5 1 . . . . . . . . . . . . . . . . .

g*10 g*11 · · · g*1n

g*20 g*21 · · · g*2n

g*m0 g*m1 · · · g*mn

2 , [36]

wheren is again the number of pulses andm the number of
possibleg* pathways.

According to Eq. [28] we have

k̂ 5 ĝ* z ĥ 5 1 . . . . . . . . . . . . . . . . .

g*10 g*11 · · · g*1n

g*20 g*21 · · · g*2n

g*m0 g*m1 · · · g*mn

2 z 1 . . . . . . . . . .

h0xz h1y h1z

h1xz h2y h2z

hnxz hny hnz

2
5 1 . . . . . . . . . . .

k1x k1y k1z

k2x k2y k2z

kmx kmy kmz

2 , [37]

wherek̂ contains the spatial frequencies for every pathway and
every gradient direction.

It remains to obtain the signal attenuations for the elements
of k̂, which is done by the procedure outlined above to calcu-

FIG. 2. Comparison between the attenuation functions due to az gradient
and a transverse gradient in a cylindrical sample as a function ofu 5 kzzmax

and u 5 kxxmax, respectively. Solid lines (z gradient): |sinc(u)| 1 envelope
function (Eq. [31]), dashed lines (transverse gradient): |2J1(u)/u| 1 envelope
function (Eq. [34]).

21SIMULATION OF COHERENCE TRANSFER PATHWAYS



late the total attenuation for each pathway (Eqs. [31], [34],
and [35]).

As in the previous section these formulas are obtained with-
out direct reference to a particular spin system. The only
requirements are thatg* not change between the RF-pulses and
that a matrixĝ* be constructed that reflects all possible CTPs.
This might be a practical problem due to computer memory
limitations in heteronuclear spin systems because the number
of pathways (rows ofĝ*) can become very large.

Weighting by Diffusion

The effect of self-diffusion must always be considered when
gradient sequences are constructed for the selection of CTPs,
especially with large intergradient spacing and large gradient
strengths. We propose a simple scheme to estimate the effects
of diffusion upon a PFG sequence.

For an arbitrary gradient sequence a phenomenological dif-
fusion term is introduced into the Bloch equations (12, 16–18),
from which the signal attenuation

F ~t ! 5 expF2DE
0

tSE
0

t9

g* G~t0 !dt0 D 2

dt9 G [38]

may be derived. Diffusion is exploited in diffusion filters, e.g.,
for water suppression (3, 19). More complex situations occur if
differentg* pathways experience different effective gradients.

For the following treatment we disregard the effect of dif-
fusion during the gradients since in spectroscopy applications
they are usually short compared to the inter-gradient delays. A
quick estimation should justify this statement. The Stejskal–
Tanner diffusion equation (16) for a gradient echo is

F 5 expF2D ~gGd !2SD 2
d

3DG , [39]

whereD is the delay between the starts of the two gradients,
andd is the gradient duration (rectangular shape). Neglecting
diffusion during the gradients is equivalent to omittingd

3
in

this equation. Using plausible choices for experimental param-
eters (D 5 2 3 10210 m2 s21 (diffusion coefficient of ly-
sozyme in water at room temperature),d 5 2 ms,G 5 0.5 T
m21 (along thez-direction), andg 5 2.6753 108 rad T21 s21).
We obtain

expFD ~gGd !2
d

3G 5 1.0096 , [40]

which shows that by neglecting diffusion during the gradient
we make a negligibly small error. Even with very fast diffusion
(DH2O

5 2.33 1029 m2 s21) the effect is on the order of 10%.
It should be emphasized that the choice of parameters is

conservative, since it amounts to a case where gradient atten-
uation of unwanted pathways is approximately 7.53 1024 (Eq.
[31], assuming the active length to be 1 cm, i.e.,zmax 5 0.5
cm), which is usually more than necessary.

Therefore, the gradient pulses will be considered as having
delta function shapes with areas ofhij as defined in Eq. [27].

For a giveng* pathway we can calculate

F 5 exp@2D O
j5x,y,z

O
q51

n

~O
k50

q21

g*khkj !
2Dq# , [41]

where theDq are the delays between the starting points of the
gradients. Because of the square in Eq. [38] the information on
the gradientdirection is lost, which reflects the fact that no
direction may be attributed to isotropic diffusion.

It is now easy to generalize for a matrixĝ* as in
Eq. [36]:

Fi 5 exp@2D O
j5x,y,z

O
q51

n

~O
k50

q21

g*ikhkj !
2Dq# . [42]

Diffusion, however, is not the only motional process affect-
ing high-resolution NMR spectroscopy. As we pointed out
recently the signal attenuation caused by convection can by far
exceed the one caused by diffusion (20, 21). However, for its
description additional information about the flow profile is
needed which is seldom available. We thus defer the treatment
of convection to the Appendix, where it can be seen that its
inclusion requires a minor effort.

RF-Pulses and Relaxation

The approach outlined above assumes that all possible CTPs
are equally probable, which ultimately leads to the construction
of phase cycles which are larger than necessary.

A perfect 180° pulse is very selective in that it cleanly
inverts the coherence order without mixing any pathways. A
perfect 90° pulse acting on equilibrium magnetization or lon-
gitudinal one-spin order will only create61 coherences. These
selection rules are easily implemented in the program.

However, in real situations perfect pulses do not exist due to
RF-inhomogeneity and offset dependence caused by finite
power. To account for these imperfections and the attenuations
of different CTPs by the RF-pulses a complete density matrix
calculation for AX and AMX spin1

2
systems has been imple-

mented. The calculation has to be performed separately for
each CTP. However, we need only consider the pathways that
are left over after the cancellation and attenuation by phase
cycles and gradient sequences (where a threshold value deter-
mines the amount of attenuation that qualifies as cancellation).
Usually it suffices to retain the strongest few hundred path-
ways. Alternatively, the pathway information can be used for
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the input into a different simulation platform such as GAMMA
(7), where superoperator calculus can be employed (to intro-
duce detailed relaxation models).

It should be borne in mind that by introducing the density
matrix, we digress from the principle of generality and intro-
duce spin system specifics. Density matrix calculations are
therefore an option in the program that can be enabled at the
discretion of the user.

It is possible to include empirical weighting factors that can
be used to account, e.g., for transverse relaxation or relative
abundance on an at least phenomenological basis (which may
be inaccurate but more general than an exact calculation).

IMPLEMENTATION AND EXAMPLES

We have implemented the algorithms outlined above in a
MATLAB program, which we choose to call CCCP (Complete
Calculation of Coherence Pathways).

All experiment dependent parameters are stored in a separate
file, which is specified to the main program on the command line.
An example of such an input file is displayed in Fig. 3. Detailed
instructions for creating input files are given in the user manual of
the program, which will be available from the authors.

The phase cycle is input in the form of vectors for each pulse
(variable ph), and for the receiver (phrec) in analogy to
common pulse programming languages. The base of the cycles
can be chosen bybase, recbase.

The allow_paths variable is a matrix in which restric-
tions and/or attenuations of the allowed CTPs can be entered.
This can be done separately for every nuclear species which is
indicated by the number in braces. In the example of Fig. 3
zero order coherence is chosen at the beginning of the pulse
sequence, and after the first pulse only orders of11, 0,21 are
permitted;21 coherence is detected for the first nucleus (1H)
and zero for the second nucleus (13C).

The gyromagnetic ratios for the nuclear species are input in
the vectorgamma. The grads array contains the gradient
areas between the RF-pulses (starting before the first pulse) in
units of Teslas per meter. The array can contain up to
three rows to handle three-axis gradient systems. The array
sampledim contains the sample dimensions (the active
length of the receiver coil inz and the inner diameter of the
NMR tube). The diffusion coefficient,diffconst, and the
delays between the gradients,intergrad_dels, are used to
calculate the diffusion attenuation of the pathways.

The density matrix calculations are controlled by the vari-
ablesspin_system, pulses, J, del, abundance.
epsilon andcutoff determine the threshold to be used

after the calculation of the phase cycle and the gradient atten-
uations, respectively.

The program first constructs thep̂ matrix (Eq. [14]) consid-
ering the restrictions imposed by the user. The weighting
factors (allowed_paths) are used to calculate the “empir-

ical” weighting factors for the CTPs. The signal attenuation
due to the phase cycle is calculated by means of Eqs. [15], [16],
and [17], and canceled pathways are discarded (according to
the specified thresholdepsilon).

The ĝ* matrix is constructed fromp̂ using Eq. [22] and the
gradient damping is calculated using Eqs. [37], [31], [34], and
[35]. Another threshold determines the pathways which are to
be discarded.

Diffusion damping is calculated using Eq. [42]. Again, path-
ways are discarded according to the threshold.

The remaining pathways are sorted by their overall signal
intensity and prepared for display and, if requested for further
calculations, employ density operator calculations.

Some results of simulations with CCCP are shown in Figs.
4–9 together with the corresponding pulse sequences.

We chose three representative examples of NMR experi-
ments to be analyzed by the program. First, a stimulated echo
(STE) diffusion sequence with bipolar gradients (22), which
should highlight the importance of the analysis of diffusion
damping in the presence of pulsed field gradients. The second
is a 3D homonuclear PFG 2Q-NOESY (23), and the third is an
implementation of HSQC (24–26) to exemplify the application
to heteronuclear spin systems.

For all simulations the eight strongest pathways are shown.
The dimensions of the cylinder representing the active volume
are 10 mm alongz, diameter of 5 mm. For the calculation
of the diffusion attenuation a diffusion coefficient ofD 5 7 3
10210 m2/s is assumed, which corresponds, e.g., to a medium-
sized protein dissolved in water.

In the density matrix calculations some evolution delays,
like the mixing time ort1, t2 delays, were set to a value near
1/(4J), so that both in-phase and anti-phase terms develop with
approximately equal amplitude. A homonuclear AMX spin
system with the coupling constants 16, 12, and 7 Hz was used
for these calculations (with the exception of a heteronuclear
AMX spin system for the HSQC example in Fig. 9, where the
homonuclear and the heteronuclear coupling constants were 16
and 140 Hz, respectively, and only one proton was coupled to
the carbon). No chemical shift evolution is considered since it
is irrelevant here.

All simulations start out with coherence order zero (equilib-
rium magnetization). After the first pulse only61, and zero
coherence orders were allowed. The detector was assumed to
cleanly select21QC. If this criterion is left out, the effects of
quadrature images and/or axial peaks can be simulated easily.

To account for imperfect pulses the flip angles were reduced
to the indicated extent. No carrier offset effects were consid-
ered in the examples given.

In a first simulation of the STE diffusion sequence (Fig. 4)
we have not included the information about the spin system (no
density matrix calculation). All coherence orders from23 to 3
were allowed, giving 50,421 possible pathways. The desired
pathways (nos. 4 and 5), which undergo dephasing during the
first two gradients and rephasing during the last two, are not the
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strongest ones. The diffusion attenuation of these pathways is
exploited for the determination of diffusion coefficients and to
achieve diffusion separation in DOSY experiments (20, 27–
29). The spoiler gradients duringT andTe are used to defocus
everything but zero quantum coherence. It is clear from the
graph, however, that pathways will be retained which are
affected only by one lobe of the bipolar gradient (nos. 1 and 2).

Diffusion damping is weaker for those, as can be seen in the
table in Fig. 4. Even triple quantum terms may occur (pathway
nos. 3, 6–8). These pathways are caused by the imperfections
of the 180° pulses and would lead to erroneous results in the
determination of diffusion coefficients.

Given such an analysis we would be tempted to implement
a longer phase cycle to remove the unwanted pathways. How-

FIG. 3. Sample input file to the program CCCP for the simulation of an HSQC experiment (Fig. 8).
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ever, we have not yet considered that the RF-pulses cause an
additional attenuation of the CTPs. In a second simulation run
we included a density matrix calculation for an AMX spin
system using pulses with flip angles which were 5% short (to
accommodate imperfect pulses). The results are displayed in
Fig. 5. In this analysis the desired pathways end up in the first
two positions. The strongest remaining undesired pathways
have now an intensity of up to 1% as compared to the desired

pathways (if compared to the sum of the two desired pathways,
they have only up to 0.5% of intensity). These pathways can be
further attenuated by increasing the spoiler gradients duringT
andTe. The success of this particular pulse sequence and phase
cycle has been proven by experiment (20, 29, 30).

In Fig. 6 the results of a simulation of a 3D homonuclear
PFG 2Q-NOESY (23) are shown (352,947 pathways have to be
considered, again with a maximum coherence order of 3). The
delays and gradient strengths were set such as to reflect those
of the original publication (23) (with the exception of the
mixing time, andt1, t2, where intermediate values were taken
as described above). The pulses were set 3% short in this case.
Pulses 1–3 perform a NOESY step witht1 labeling (G1 spoils
transverse magnetization during the NOESY mixing time), and
pulses 3–5 excite double quantum coherence, which evolves
during t2 and is subsequently transformed to single quantum
coherence for detection. Due to the imperfections of pulse 4
some undesired pathways (nos. 5–8) are retained with a fairly
high intensity (up to 8.9% of the strongest pathways). These
may cause phase errors in the spectra. In an attempt to atten-

FIG. 5. CCCP simulation of a stimulated gradient echo diffusion sequence
with bipolar gradient pulses and a longitudinal eddy current delay. The
sequence and parameters are the same as those in Fig. 4 but an AMX density
matrix calculation was employed with all pulses 5% short. The evolution
delays were 2, 2, 15, 2, 2, and 15 ms. The column “pulse” in the table contains
the attenuation factors due to the density matrix calculations.

FIG. 4. CCCP simulation of a stimulated gradient echo diffusion sequence
employing bipolar gradient pulses ramped to give a pseudo-t1 dimension
(rectangles with a diagonal) and a longitudinal eddy current delayTe. Narrow
and wide bars represent 90 and 180 degree pulses. All gradients are labeled
according to the direction along which they are applied.GX3 and GY6 are
spoiler gradients used to defocus transverse magnetization duringT and Te.
Phase cycle:f(1) 5 x, x, y, y, 2x, 2x, 2y, 2y; f(2) 5 y, 2x, 2x, 2y,
2y, x, x, y; f(3) 5 f(7) 5 x; f(4) 5 2x, 2x, 2y, 2y; f(5) 5 2y, 2y,
x, x; f(6) 5 2x; f(receiver)5 2(x, 2x ), 2(2x, x ) . The gradient strengths
were 0.25 T/m for each of the bipolar gradient lobes (gradientsGZ1, 2GZ2,
GZ4, 2GZ5 ) , 0.025 T/m for each of the spoiler gradients (GX3, GY3 ), duration
1 ms. The inter-gradient delays were 2, 2, 50, 2, and 2 ms. No density matrix
calculation was made. The following signal attenuations are given in the table
at the bottom: total—total signal attenuation; norm—normalized to the stron-
gest pathway, pc—attenuation due to phase cycle; grad—attenuation due to the
gradients, diff—attenuation due to diffusion;c—phases of the pathways.
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uate then further we introduce two new gradients,G5 andG6,
orthogonal to the other ones, into the pulse sequence. The
results of this new simulation are displayed in Fig. 7, where it
is seen that we have effectively suppressed the troublesome
pathways. However, new, undesired pathways appear in the
positions 5–8. These involve triple quantum coherence be-
tween the pulses 3 and 5, which is refocused by pulse 4.
Therefore these pathways do not give rise to phase errors.
However, since their phase is opposite to the desired pathways
they may cause signal attenuation.

The desired pathways 1–4 have coherence orders of61
during t1 and can thus be used for phase sensitive detection
using TPPI (31, 32) or States–TPPI (33, 34). Phase sensitive

detection int2 can only be performed by changing the polarity
of G2 andG3 in consecutive scans as mentioned in (23). The
result of such a scan is displayed in Fig. 8. The coherence
orders duringt2 are opposite.

A word is in order about the differences in the attenuations
of the first four pathways (the desired pathways) in Figs. 6–8.
They can be explained by the fact that the pulses are 3% short,
which causes them to excite positive and negative coherence
orders with different intensities. These differences are usually
not observed since the flip angle error due to RF-inhomogene-
ity is averaged over the entire sample volume.

The last example shows the pathway selection for HSQC
(Fig. 9). Here, the allowed coherence orders range from22 to
2 for protons and from21 to 11 for carbons (151,875 path-
ways). The parameters for this simulation are shown in Fig. 3.
It is important to note that the strongest pathways all involve
transfers in the carbon coherence orders, meaning that proton

FIG. 7. CCCP simulation of a 3D homonuclear PFG 2Q-NOESY (23).
The parameters are the same as those in Fig. 6 but two new gradients,GY5 5
GY6 5 0.05 T/m, were inserted (with a spacing of 15 ms).

FIG. 6. CCCP simulation of a 3D homonuclear PFG 2Q-NOESY (23).
The phase cycle isf(1) 5 4x, 4(2x ); f(8) 5 x, 2y, 2x, y; f(receiver)
5 2(x, 2x ), 2(2x, x ) ; all other phases remain constant atx. The parameters
were taken mainly from (23), i.e., GX1 5 0.05 T/m, GZ2 5 2GZ3 5 0.05
T/m, GZ4 5 0.2 T/m. The gradient durationd is 1.25 ms. Only the delays
betweenGZ2, GZ3, andGZ4 are important for the diffusion damping (since
GX1 is orthogonal to them), which were 1.35, and 2.7 ms, respectively. For the
density matrix calculations the pulses were set 3% short, and the following
inter-RF-pulse delays were used: 15, 15, 15, 15, 7.5, 1.35, 1.35, and 1.35 ms.
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signals not attached to13C are well attenuated. The density
matrix calculation was performed using an AMX spin system
consisting of two1H and one13C nuclei. An abundance factor
of 1% was used to account for the rare natural abundance of
13C. Only one proton (the one coupled to the carbon) was
detected. Ideal decoupling was assumed.

CONCLUSION

The formalism presented here is a valuable tool for the
design of optimized phase cycles and gradient sequences in
pulse sequences applicable to different kinds of nuclei and spin
systems (in NMR and EPR likewise). The method is both
general and time efficient. It involves the construction of all
possible CTPs, the calculation of their attenuation by phase
cycling, gradient sequences, diffusion, and RF-pulses. The

effects of convection can be included easily as is shown in the
Appendix, which can be useful for the design of gradient
enhanced experiments with convection compensation (20, 21).
The treatment of diffusion is very important particularly for the
simulation and optimization of NMR diffusion pulse sequences

FIG. 9. CCCP simulation of a HSQC experiment including a density
matrix calculation for an AMX system. The phase cycle isf(4) 5 y; f(5) 5
x, 2x; f(6) 5 x, x, 2x, 2x; f(7) 5 f(9) 5 4x, 4(2x ); f(receiver)5
2(x, 2x ), 2(2x, x ) ; all other phases are constant atx. For the diffusion
weighting only the delayd 1 t, which was set to 3.7 ms, is relevant. The pulses
were set 5% short, and the evolution delays 1.7, 1.7, 15, 17, 2, 1.7, and 1.7 ms
were used. The gradient strengths were 0.199, and 0.05 T/m at 1 ms duration.
For the eight strongest pathways the partial coherence orders of protons and
carbons are displayed separately.

FIG. 8. CCCP simulation of a 3D homonuclear PFG 2Q-NOESY (23).
The parameters are the same as those in Fig. 7 but the polarity of the gradients
GZ2 andGZ3 is flipped, leading to echo type coherence selection duringt2 (as
opposed to anti-echo type in Fig. 7).
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and applications of diffusion separated NMR (20, 27–29) as
well as diffusion filters (3, 19).

The pathways can be visually inspected in a graphical dis-
play and empirical knowledge may be used to filter out possi-
bly redundant and irrelevant information. If exact results on
spin dynamics are required a detailed simulation may be ap-
pended using the results of our general calculations, which,
however, implies giving up generality. This algorithm has been
implemented in a MATLAB program (CCCP), which is avail-
able from the authors upon request.

The approach is practically limited by the amount of com-
puter memory available (the number of possible CTPs rises to
the power of the number of pulses involved). When the mem-
ory limit is reached, the problem can still be solved by ana-
lyzing parts of the pulse sequences separately, since the coher-
ence orders before the pulses and at the end can be specified by
the user at will.

We believe that the CCCP approach fills a gap in the field of
NMR simulations. As we could show, the examination of the
relative attenuation of different CTPs caused by different fil-
tering techniques is of valuable help for the design of phase
cycles and gradient sequences. Using our method we optimized
an experiment published in Ref. (23) and propose here an
improvement of the CTP selection method for a 3D homo-
nuclear PFG 2Q-NOESY experiment, which may be useful in
practice.

APPENDIX

We have shown recently that the effect of convection on the
signal attenuation in gradient enhanced spectra can be very
strong (20, 21). Here, we present a simple mathematical de-
scription thereof and a method for the incorporation into the
formalism presented in the main part of the article.

A signal following a particularg* pathway acquires the
location r dependent phase

c ~r ! 5 E
0

t

g* ~t9 !G~t9 ! z r ~t9 !dt9 . [43]

Using the expansionr 5 r0 1 vt 1 1
2

at2 1 . . . we can
write

c 5 r 0 E
0

t

g* ~t9 !G~t9 !dt9 1 v

0th moment

E
0

t

g* ~t9 !G~t9 !t9dt9

1st moment

[44]1
1

2
a E

0

t

g* ~t9 !G~t9 !t92dt9 1 · · ·

2nd moment

.

We have treated the influence of the zeroth moment in the main
text by calculating the attenuation of the different CTPs by the
gradient sequence. We have not yet, however, considered
higher moments. All higher moments introduce additional con-
stant phase shifts ifv, a, etc. are kept the same for the duration
of the experiment, and uniform over the sample volume. For
simplicity we shall be concerned only withv being constant
and non-zero (i.e., no flow acceleration). In this case only a
phase factor proportional to the velocity is introduced. When a
velocity distribution f(v) exists in the sample, the ensemble
average results in the signal attenuation

F 5 E f ~v!exp~2ic ~v!!dv , [45]

where the integral is taken over the ranges of the velocitiesvx,
vy, vz, andc (v) 5 v*0

t g*( t9 )G(t9 )t9dt9.
Using the same simplifying assumptions as those used with

the diffusion weighting (neglect of motion during the gradient
pulses) we calculatec(v) as

c ~v! 5 v z O
i51

n

g*i ~hix, hiy, hiz!
Tti , [46]

wherehij is defined in Eq. [27],v 5 (vx, vy, vz), andti is the
time of thei th RF-pulse.

In order to calculate the signal attenuation we have to make
an assumption about the velocity distribution. A simple case is
a uniform distribution between2vmax and vmax (in the z-
direction) and no motion in thex- andy-directions:

f ~v! 5 d ~vx! z d ~vy! z H 1

2vmax

if |vz| # vmax

0 if |vz| . vmax.
[47]

The signal attenuation is then calculated from Eq. [45] to

F 5 sinc~c ~vmax!! , [48]

which can be done separately for everyg* pathway by use of
Eq. [46].
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